在电子技术飞速发展的今天,大多数功放都采用了集成电路的设计,对于发烧者来说,能够制作出一台分离元件搭建的高保真功放也是一项基本功。本文介绍的功率放大器采用全分离元件结构,在输入级和电压放大级采用两级非对称结构的差分电路,放大线性好、频响宽,对温漂和电源波动影响抑制力强,音质甜美,韵味十足,值得一试。
一、电路原理 图1为本功率放大器的主放大电路,VT2、VT3构成输入级差分电路,VT1、LED1、R4、R9及C2组成输入级差分电路的恒流源电路。LED1正常发光时其正负端电压差恒定在1.8V~2V之间,噪声小于稳压二极管,常用于功放电路。其正负端的1.9V左右电压差作用于VT1发射结回路.使VT1射-集电流恒定在(1.9V~0.6V)/680Ω≈1.9mA。在VT2、VT3差分输入电路参数完全对称的情况下,流经VT2、VT3射-集的电流为1.9mA的一半即0.95mA。RP2改变VT2、VT3发射极的反馈电阻,使VT2、VT3的静态工作点发生正负对称变化,最终改变输出级中点的直流电位。
R7、R8上的电压降正常情况下为2.2kΩ×0.95mA≈2.1 V,作为电压放大级VT7、VT8差分电路的发射结偏置电压。流经VT7、VT8集-射的电流为(2.1 V~0.6V)/R13≈4.5mA。VT4、VT5构成VT7、VT8差分电压放大级的镜像电流源负载。VT6接成共基状态,作为VT7的负载电阻。
VT9、R12及RP3构成推动级、输出级的偏置电路,同时起到对末级功率管温度反馈控制作用。调节RP3可以改变VT9集-射之间的电压,进而改变推动级和输出级的静态偏置电流。另一方面,VT9与功率级对管VT12、VT13安装在同一块散热片上,起到对VT12、VT13温度的反馈控制作用,防止VT12、VT13温度过高导致输出电流过大而烧坏。温度反馈控制的原理是,当VT12、VT13输出电流增大,升温超标时VT9的集-射电流增加而集-射电压下降,从而减小了推动级和输出级的静态输出电流,将功率对管VT12、VT13的电流和温度控制在安全范围之内。
VT10、VT11构成推动级,其发射极电阻R19、R20上的直流电压降又作为功率输出级VT12、VT13的偏置电压,调节RP3可以改变VT12、VT13的静态输出电流。R26、C9及R27构成本机的交流反馈电路,整机的电压放大倍数为52倍(Av+=1+R26/R2 7=52)。反馈取出点选在推动级的对称中点,